
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1596
ISSN 2229-5518

IJSER © 2013
http://www .ijser.org

Secure Data Forwarding on Cloud Storage System
M. Madhavi, S.Shanawaz Basha, M.Ranjith Reddy

Abstract- A cloud storage system, consisting of a group of storage servers, provides continuing storage services over the Internet. Storing data in a third
party’s cloud system causes serious problem over data discretion. secure and reliable cloud data management to guarantee the data correctness and
availability, given the difficulty that data are no longer locally possessed by data owners. We design a secure cloud storage service which addresses the
reliability issue with near-optimal overall performance. By allowing a third party to perform the public integrity verification, data owners are significantly
released from the onerous work of periodically checking data integrity. To completely free the data owner from the burden of being online after data
outsourcing, we propose an exact repair solution so that no metadata needs to be generated on the fly for the repaired data. The second part presents
our privacy-preserving data utilization solutions supporting two categories of semantics – keyword search and graph query. For protecting data privacy,
sensitive data has to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. We define and
solve the challenging problem of privacy-preserving multi-keyword ranked search over encrypted data in cloud computing. We establish a set of strict
privacy requirements for such a secure cloud data utilization system to become a reality. We first propose a basic idea for keyword search based on
secure inner product computation, and then give two improved schemes to achieve various stringent privacy requirements in two different threat
models.General encryption schemes keep data discretion, but also limit the functionality of the storage system because a few operations are supported
over encrypted data. Constructing a secure storage system that supports multiple functions is challenging when the storage system is distributed and
has no central power. We propose a threshold proxy re-encryption scheme and integrate it with a decentralized erasure code such that a secure
distributed storage system is formulated. The distributed storage system not only supports secure and robust data storage and retrieval, but also lets a
user forward his data in the storage servers to another user without retrieving the data back. The main technical contribution is that the proxy re-
encryption scheme supports encoding operations over encrypted messages as well as forwarding operations over encoded and encrypted messages.
Our method fully integrates encrypting, encoding, and forwarding. We analyze and suggest suitable parameters for the number of copies of a message
dispatched to storage servers and the number of storage servers queried by a key server. These parameters allow more flexible adjustment between the
number of storage servers and robustness.

Keywords- Decentralized erasure code, proxy re-encryption, threshold cryptography, secure storage system.

1. INTRODUCTION

As high-speed networks and everywhere Internet access
become available in recent years, many services are provided
on the Internet such that users can use them from anywhere at
any time. For example, the email service is probably the most
popular one. Cloud computing is a concept that treats the
resources on the Internet as a unified entity, a cloud. Users just
use services without being concerned about how computation
is done and storage is managed. In this paper, we focus on
designing a cloud storage system for robustness,
confidentiality, and functionality. A cloud storage system is
considered as a large scale distributed storage system that
consists of many independent storage servers.

Data robustness is a major requirement for storage systems.
There have been many proposals of storing data over storage
servers [1], [2], [3], [4], [5]. One way to provide data
robustness is to replicate a message such that each storage
server stores a copy of the message. It is very robust because
the message can be retrieved as long as one storage server
survives. Another way is to encode a message of k symbols
into a codeword of n symbols by erasure coding. To store a
message, each of its codeword symbols is stored in a different
storage server. A storage server failure corresponds to an
erasure error of the codeword symbol. As long as the number
of failure servers is under the tolerance threshold of the
erasure code, the message can be recovered from the
codeword symbols stored in the available storage servers by
the decoding process. This provides a tradeoff between the
storage size and the tolerance threshold of failure servers. A
decentralized erasure code is an erasure code that
independently computes each codeword symbol for a

message. Thus, the encoding process for a message can be split
into n parallel tasks of generating codeword symbols. A
decentralized erasure code is suitable for use in a distributed
storage system. After the message symbols are sent to storage
servers, each storage server independently computes a
codeword symbol for the received message symbols and
stores it.
This finishes the encoding and storing process. The recovery
process is the same.

Storing data in a third party’s cloud system causes serious
concern on data confidentiality. In order to provide strong
confidentiality for messages in storage servers, a user can
encrypt messages by a cryptographic method before applying
an erasure code method to encode and store messages. When
he wants to use a message, he needs to retrieve the codeword
symbols from storage servers, decode them, and then decrypt
them by using cryptographic keys. There are three problems
in the above straightforward integration of encryption and
encoding. First, the user has to do most computation and the
communication traffic between the user and storage servers is
high. Second, the user has to manage his cryptographic keys.
If the user’s device of storing the keys is lost or compromised,
the security is broken. Finally, besides data storing and
retrieving, it is hard for storage servers to directly support
other functions. For example, storage servers cannot directly
forward a user’s messages to another one. The owner of
messages has to retrieve, decode, decrypt and then forward
them to another user.

In this paper, we are address the problem of directly data
forwarding to another user by storage servers under the

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1597
ISSN 2229-5518

IJSER © 2013
http://www .ijser.org

control of the data owner. We consider the system model that
consists of distributed storage servers and key servers. Since
storing cryptographic keys in a single device is precarious, a
user distributes his cryptographic key to key servers that shall
perform cryptographic functions on behalf of the user. These
key servers are highly protected by security mechanisms. To
well fit the distributed structure of systems, we require that
servers independently perform all operations. With this
consideration, we propose a new threshold proxy re-
encryption scheme and integrate it with a secure decentralized
code to form a secure distributed storage system. The
encryption scheme supports encoding operations over
encrypted messages and forwarding operations over
encrypted and encoded messages. The tight integration of
encoding, encryption, and forwarding makes the storage
system efficiently meet the requirements of data robustness,
data confidentiality, and data forwarding. Accomplishing the
integration with consideration of a distributed structure is
difficult. Our system meets the requirements that storage
servers independently perform encoding and re-encryption
and key servers independently perform partial decryption.
Moreover, we consider the system in a more general setting
than previous works. This setting allows more flexible
adjustment between the number of storage servers and
robustness.

2. EXISTING SYSTEM

In Existing System we use a straightforward integration

method. In straightforward integration method Storing data in
a third party’s cloud system causes serious concern on data
confidentiality. From the outlook of data security, which has
always been an important aspect of quality of service, Cloud
Computing inevitably poses new challenging security threats
for number of reasons. In order to provide strong
confidentiality for messages in storage servers, a user can
encrypt messages by a cryptographic method before applying
an erasure code method to encode and store messages. When
he wants to use a message, he needs to retrieve the General
encryption schemes protect data confidentiality, but also limit
the functionality of the storage system because a few
operations are supported over encrypted data. A
decentralized architecture for storage systems offers good
scalability, because a storage server can join or leave without
control of a central authority.

Firstly, traditional cryptographic primitives for the purpose

of data security protection cannot be directly adopted due to
the users’ loss control of data under Cloud Computing.
Therefore, verification of correct data storage in the cloud
must be conducted without explicit knowledge of the whole
data. Considering various kinds of data for each user stored in
the cloud and the demand of long term continuous assurance
of their data safety, the problem of verifying correctness of
data storage in the cloud becomes even more challenging.

Secondly, Cloud Computing is not just a third party data

warehouse. The data stored in the cloud may be frequently
updated by the users, including insertion, deletion,
modification, appending, reordering, etc. To ensure storage
correctness under dynamic data update is hence of paramount
importance.

Drawbacks of Existing System

1) The user can perform more computation and

communication traffic between the user and storage
servers is high.

2) The user has to manage his cryptographic keys
otherwise the security has to be broken.

3) The data storing and retrieving, it is hard for storage
servers to directly support other functions.

4) The user is unable to share the data confidentiality to
the destination.

Fig. 1. A general system model of our work.

3. PROPOSED SYSTEM

In this paper, we propose an effective and flexible

distributed scheme with explicit dynamic data support to
ensure the correctness of users’ data in the cloud. We rely on
erasure correcting code in the file distribution preparation to
provide redundancies and guarantee the data dependability.
This construction drastically reduces the communication and
storage overhead as compared to the traditional replication-
based file distribution techniques. By utilizing the
homomorphic token with distributed verification of erasure-
coded data, our scheme achieves the storage correctness
insurance as well as data error localization: whenever data
corruption has been detected during the storage correctness
verification, our scheme can almost guarantee the
simultaneous localization of data errors, i.e., the identification
of the misbehaving server(s).

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1598
ISSN 2229-5518

IJSER © 2013
http://www .ijser.org

In the proxy Re-encryption key the messages are first
encrypted by the owner and then stored in a storage server.
When a user wants to share his messages, he sends a re-
encryption key to the storage server. The storage server re-
encrypts the encrypted messages for the authorized user.
Thus, their system has data confidentiality and supports the
data forwarding function.

 An encryption scheme is multiplicative homomorphic if it

supports a group operation on encrypted plaintexts without
decryption. The multiplicative homomorphic encryption
scheme supports the encoding operation over encrypted
messages. We then convert a proxy re-encryption scheme with
multiplicative homomorphic property into a threshold
version. A secret key is shared to key servers with a threshold
value t. To decrypt for a set of k message symbols, each key
server independently queries 2 storage servers and partially
decrypts two encrypted codeword symbols. As long as t key
servers are available, k codeword symbols are obtained from
the partially decrypted cipher texts.

The distributed systems require independent servers to

perform all operations. We propose a new threshold proxy re-
encryption scheme and integrate it with a secure decentralized
code to form a secure distributed storage system. The
encryption scheme supports encoding operations over
encrypted messages and forwarding operations over
encrypted and encoded messages.

3.1. PROXY RE-ENCRYPTION SCHEMES

In a proxy re-encryption scheme, a proxy server can transfer

a ciphertext under a public key to a new one under
another public key by using the re-encryption key

 The server does not know the plaintext during
transformation. Ateniese et al.[6] proposed some proxy re-
encryption schemes and applied them to the sharing function
of secure storage systems. In their work, messages are first
encrypted by the owner and then stored in a storage server.
When a user wants to share his messages, he sends a re-
encryption key to the storage server. The storage server re-
encrypts the encrypted messages for the authorized user.
Thus, their system has data confidentiality and supports the
data forwarding function. Our work further integrates
encryption, re-encryption, and encoding such that storage
robustness
is strengthened.

Type-based proxy re-encryption schemes proposed by Tang
[7] provide a better granularity on the granted right of a re-
encryption key. A user can decide which type of messages and
with whom he wants to share in this kind of proxy
reencryption schemes. Key-private proxy re-encryption
schemes are proposed by Ateniese et al. [8]. In a key-private

proxy re-encryption scheme, given a re-encryption key, a
proxy server cannot determine the identity of the recipient.
This kind of proxy re-encryption schemes provides higher
privacy guarantee against proxy servers. Although most
proxy re-encryption schemes use pairing operations, there
exist proxy re-encryption schemes without pairing [9].

4. SYSTEM MODEL

As shown in Fig. 1, our system model consists of users, n

storage servers SS1; SS2; . . . ; SSn, and m key servers KS1; KS2;
. . . ; KSm. Storage servers provide storage services and key
servers provide key management services. They work
independently. Our distributed storage system consists of four
phases: system setup, data storage, data forwarding, and data
retrieval. These four phases are described as follows.

1) In the system setup phase, the system manager chooses

system parameters and publishes them. Each user A is
assigned a public-secret key pair User A
distributes his secret key to key servers such that
each key server holds a key share ; .
The key is shared with a threshold t.

2) In the data storage phase, user A encrypts his message M
and dispatches it to and dispatches it to storage servers.
A message M is decomposed into k blocks

and has an identifier ID. User A encrypts
each block into a cipher text and sends it to
randomly chosen storage servers. Upon receiving cipher
texts from a user, each storage server linearly combines
them with randomly chosen coefficients into a
codeword symbol and stores it. Note that a storage
server may receive less than message blocks and we
assume that all storage servers know the value in
advance.

3) In the data forwarding phase, user A forwards his
encrypted message with an identifier ID stored in
storage servers to user B such that B can decrypt the
forwarded message by his secret key. To do so, A uses
his secret key and B’s public key is to compute
a re-encryption key and then sends to all
storage servers. Each storage server uses the re-
encryption key to re-encrypt its codeword symbol for
later retrieval requests by B. The re-encrypted codeword
symbol is the combination of cipher texts under B’s
public key. In order to distinguish re-encrypted
codeword symbols from intact ones, we call them

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1599
ISSN 2229-5518

IJSER © 2013
http://www .ijser.org

original codeword symbols and re-encrypted codeword
symbols, respectively.

4) In the data retrieval phase, user A requests to retrieve a

message from storage servers. The message is either
stored by him or forwarded to him. User A sends a
retrieval request to key servers. Upon receiving the
retrieval request and executing a proper authentication
process with user A, each key server requests u
randomly chosen storage servers to get codeword
symbols and does partial decryption on the received
codeword symbols by using the key share . Finally,
user A combines the partially decrypted codeword
symbols to obtain the original message M.

System recovering: When a storage server fails, a new one is
added. The new storage server queries k available storage
servers, linearly combines the received codeword symbols as a
new one and stores it. The system is then recovered.

4.1. THREAT MODEL

We consider data confidentiality for both data storage and
data forwarding. In this threat model, an attacker wants to
break data confidentiality of a target user. To do so, the
attacker colludes with all storage servers, non-target users,
and up to key servers. The attacker analyzes stored
messages in storage servers, the secret keys of non-target
users, and the shared keys stored in key servers. Note that the
storage servers store all re-encryption keys provided by users.
The attacker may try to generate a new re-encryption key from
stored re-encryption keys. We formally model this attack by
the standard chosen plaintext attack1 of the proxy re-
encryption scheme in a threshold version, as shown in Fig. 2.

Fig. 2. The security game for the chosen plaintext attack.

The challenger provides the system parameters. After the
attacker chooses a target user, the challenger gives him

 key shares of the secret key of the target user to
model compromised key servers. Then, the attacker
can query secret keys of other users and all re-encryption keys
except those from to other users. This model compromised
non-target users and storage servers. In the challenge phase,
the attacker chooses two messages and with the
identifiers and , respectively. The challenger throws a
random coin and encrypts the message with public
key . After getting the ciphertext from the challenger, the
attacker outputs a bit for guessing b. In this game, the
attacker wins if and only if . The advantage of the

attacker is defined as .

A cloud storage system modeled in the above is secure if no

probabilistic polynomial time attacker wins the game with a
non negligible advantage. A secure cloud storage system
implies that an unauthorized user or server cannot get the
content of stored messages, and a storage server cannot
generate re-encryption keys by himself. If a storage server can
generate a re-encryption key from the target user to another
user B, the attacker can win the security game by re-
encrypting the ciphertext to B and decrypting the re-encrypted
ciphertext using the secret key . Therefore, this model
addresses the security of data storage and data forwarding.

4.2. ADVANTAGES OF PROPOSED SYSTEM

1) Tight integration of encoding, encryption, and
forwarding makes the storage system efficiently meet
the requirements of data robustness, data
confidentiality, and data forwarding.

2) The Storage servers independently perform encoding
and re-encryption process and the key servers
independently perform partial decryption process.

3) More flexible adjustment between the number of
storage servers and robustness.

4) Compared to many of its predecessors, which only
provide binary results about the storage state across
the distributed servers, the challenge-response
protocol in our work further provides the localization
of data error.

5) Unlike most prior works for ensuring remote data
integrity, the new scheme supports secure and
efficient dynamic operations on data blocks,
including: update, delete and append.

5. SECURITY ANALYSIS

The data confidentiality of our cloud storage system is

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1600
ISSN 2229-5518

IJSER © 2013
http://www .ijser.org

guaranteed even if all storage servers, non-target users, and
up to key servers are compromised by the attacker.
Recall the security game illustrated in Fig. 2.

6. CONCLUSION

In this paper, we consider a cloud storage system consists of

storage servers and key servers. We integrate a newly
proposed threshold proxy re-encryption scheme and erasure
codes over exponents. The threshold proxy re-encryption
scheme supports encoding, forwarding, and partial decryption
operations in a distributed way. To decrypt a message of k
blocks that are encrypted and encoded to n codeword
symbols, each key server only has to partially decrypt two
codeword symbols in our system. By using the threshold
proxy re-encryption scheme, we present a secure cloud
storage system that provides secure data storage and secure
data forwarding functionality in a decentralized structure.
Moreover, each storage server independently performs
encoding and re-encryption and each key server
independently performs partial decryption.

Our storage system and some newly proposed content

addressable file systems and storage system [27], [28], [29] are
highly compatible. Our storage servers act as storage nodes in
a content addressable storage system for storing content
addressable blocks. Our key servers act as access nodes for
providing a front-end layer such as a traditional file system
interface. Further study on detailed cooperation is required.

REFERENCES

[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.

Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, “Oceanstore: An Architecture for
Global-Scale Persis-tent Storage,” Proc. Ninth Int’l Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 190-201, 2000.

[2] P. Druschel and A. Rowstron, “PAST: A Large-Scale,
Persistent Peer-to-Peer Storage Utility,” Proc. Eighth
Workshop Hot Topics in Operating System (HotOS VIII),
pp. 75-80, 2001.

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken,

J.R. Douceur, J. Howell, J.R. Lorch, M. Theimer, and R.
Wattenhofer, “Farsite: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment,” Proc.

Fifth Symp. Operating System Design and
Implementation (OSDI), pp. 1-14, 2002.

[4] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier:
Highly Durable, Decentralized Storage despite Massive
Correlated Fail-ures,” Proc. Second Symp. Networked
Systems Design and Implemen-tation (NSDI), pp. 143-158,
2005.

[5] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-

Authority Filesystem,” Proc. Fourth ACM Int’l Workshop
Storage Security and Survivability (StorageSS), pp. 21-26,
2008.

[6] G. Ateniese, K. Fu, M. Green, and S. Hohenberger,

“Improved Proxy Re-Encryption Schemes with
Applications to Secure Distributed Storage,” ACM Trans.
Information and System Security, vol. 9, no. 1, pp. 1-30,
2006.

[7] Q. Tang, “Type-Based Proxy Re-Encryption and Its

Construction,”

Proc. Ninth Int’l Conf. Cryptology in India: Progress in
Cryptology (INDOCRYPT), pp. 130-144, 2008.

[8] G. Ateniese, K. Benson, and S. Hohenberger, “Key-Private

Proxy Re-Encryption,” Proc. Topics in Cryptology (CT-
RSA), pp. 279-294, 2009.

[9] J. Shao and Z. Cao, “CCA-Secure Proxy Re-Encryption

without Pairings,” Proc. 12th Int’l Conf. Practice and
Theory in Public Key Cryptography (PKC), pp. 357-376,
2009.

BIOGRAPHY

M.Madhavi pursuring M.Tech in Computer science &
Engineering from Indira Priyadarshini Engineering college for
women. Completed MCA from S.K.University, Anantapuram,
and B.Sc. degree in computer science, S.K.University
Anantapuram, Andhra Pradesh, India.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1601
ISSN 2229-5518

IJSER © 2013
http://www .ijser.org

S. Shanawaz Basha received his
M.Tech degree in Computer
Science from JNTU Anantapur,
India in 2011, MCA from Osmaina
University, and B.Sc.in Electronics
from S.K. University, A.P, India in
2009 and 2006 respectively. He is
currently working as Assistant
Professor at AVSV Engineering
College of JNTUA, A.P. His
current research interest includes
Wireless Sensor Networks and
networking protocols.

M.Ranjith Reddy received his M. Tech degree in Computer
Science from JNTU Anantapur, Andhra Pradesh India in 2011,
B.Tech from JNTU Anantapur, in 2005 respectively. He is
currently working as Associate Professor at Srinivasa
Ramanujan Instiute of Technology Anantapuram. Published
FOUR International Conferences and TWO National
Conferences.

IJSER

